Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 606(7912): 180-187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614225

RESUMO

Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.


Assuntos
Mitocôndrias , Translocases Mitocondriais de ADP e ATP , Prótons , Proteína Desacopladora 1 , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Nature ; 571(7766): 515-520, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31341297

RESUMO

The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.


Assuntos
Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Prótons , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Coenzimas/metabolismo , Ácidos Graxos/metabolismo , Transporte de Íons , Masculino , Camundongos , Consumo de Oxigênio
3.
Cell ; 151(2): 400-13, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063128

RESUMO

Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). Upon activation by long-chain fatty acids (LCFAs), UCP1 increases the conductance of the inner mitochondrial membrane (IMM) to make BAT mitochondria generate heat rather than ATP. Despite being a member of the family of mitochondrial anion carriers (SLC25), UCP1 is believed to transport H(+) by an unusual mechanism that has long remained unresolved. Here, we achieved direct patch-clamp measurements of UCP1 currents from the IMM of BAT mitochondria. We show that UCP1 is an LCFA anion/H(+) symporter. However, the LCFA anions cannot dissociate from UCP1 due to hydrophobic interactions established by their hydrophobic tails, and UCP1 effectively operates as an H(+) carrier activated by LCFA. A similar LCFA-dependent mechanism of transmembrane H(+) transport may be employed by other SLC25 members and be responsible for mitochondrial uncoupling and regulation of metabolic efficiency in various tissues.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Sítios de Ligação , Citoplasma/metabolismo , Canais Iônicos/antagonistas & inibidores , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Técnicas de Patch-Clamp , Prótons , Purinas/metabolismo , Proteína Desacopladora 1
4.
Cell ; 140(3): 327-37, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20144758

RESUMO

Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.


Assuntos
Canais Iônicos/metabolismo , Capacitação Espermática , Reação Acrossômica , Animais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/antagonistas & inibidores , Masculino , Camundongos , Motilidade dos Espermatozoides , Cauda do Espermatozoide/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...